LA CHIMIE DES EXPLORATEURS

Cinq explorateurs reviennent de régions différentes du globe. Chacun ramène une gourde pleine d'eau du lieu exploré.

D'où reviennent les explorateurs qui vous ont confié leurs gourdes ?

Vous devez rédiger un compte rendu détaillé de votre démarche d'investigation.

DONNÉES : Compositions ioniques de quelques eaux continentales (en g / L d'eau)

	Eau du lac	Eau de la rivière	Eau prélevée à	Eau du Grand lac	Eau de la
	africain Victoria	Tuscarawas	Bakou dans la	salé	Mer morte
	allicalli victoria	(est des USA)	mer Caspienne	(ouest des USA)	(Proche Orient)
Na⁺	0,01	0,140	3,1	67	45
Mg ²⁺	0,006	0,016	0,729	6	49
Ca ²⁺	0,01	2,10	0,35	4,07	19
Cl	0,02	0,477	5,3	112	252
SO ₄ ²⁻	0,002	0,134	3,0	13	0,508
Br⁻					5920

FICHE D'AIDE À LA <u>RÉDACTION</u> D'UN COMPTE RENDU D'UNE <u>DÉMARCHE</u> D'INVESTIGATION

Nom/ Classe

Dans ce compte rendu je dois utiliser correctement les **connecteurs logiques** (donc, car, si, alors...) et le **vocabulaire scientifique**.

1. J'inscris l'objectif de l'activité

→ Je reformule la question à laquelle je dois répondre, en intégrant le contexte.

2. Je formule des hypothèses et/ou je propose un protocole possible

- → Je formule des hypothèses argumentées « je pense que... » , « à mon avis... » , « je voudrais savoir si... »
- → J'explique l' (ou les) expérience que je veux réaliser et qui va me permettre de valider ou non mes hypothèses (éventuellement à l'aide de schémas soignés, légendés et annotés.)
- 3. <u>Je note mes observations, je joins mes résultats de mesure (sous forme de tableaux, de graphe, ...)</u>
 - → « J'observe que..... »
- 4. <u>J'utilise les résultats des observations ou des mesures pour répondre à la question posée.</u>
 - → « D'après mes observations, je peux déduire que.... »
 - → « En comparant la donnée fournie et l'observation, je peux déduire que ... »
- 5. <u>Éventuellement, je recommence les étapes 2, 3 et 4 avec les nouvelles informations</u> que je viens de trouver.
- 6. Je rédige une conclusion.
 - → La phrase de conclusion doit donner la réponse à la question posée.

Document 1 : Tests de reconnaissance des ions

lon à caractériser (aspect initial)	réactif		Testeur possible		Observation(s)
ion chlorure : Cl (incolore)	ion argent	$Ag^{^{\scriptscriptstyle +}}$	nitrate d'argent	$Ag^{+}_{,}NO_{\overline{3}}$	précipité BLANC de chlorure d'argent : AgCl qui noircit à la lumière.
ion sulfate : SO_4^{2-}	ion baryum	Ba ²⁺	Chlorure de baryum	Ba ²⁺ ,2Cl ⁻	précipité BLANC de sulfate de baryum: BaSO₄
(incolore)	ion argent	Ag ⁺	nitrate d'argent	Ag ⁺ ,NO 3	précipité BLANC de sulfate d'argent : Ag₂SO₄
Ion nitrate : NO ₃ (incolore)	Cuivre en milieu acide	Cu	Copeau de cuivre, et quelques gouttes d'acide sulfurique concentré	Cu , H ₂ SO ₄	En présence d'air, dégagement roux de dioxyde d'azote roux : NO ₂
ion potassium : K ⁺ (incolore)	Ion picrate	$C_6H_2(NO_2)_3O^{-}$	Picrate de sodium	Na^+ , $C_6H_2(NO_2)_3O^-$	aiguilles jaunes de picrate de potassium KOC ₆ H ₂ (NO ₂) ₃
Ion ammonium : NH ₄ ⁺ (incolore)	lon hydroxyde	HO	Hydroxyde de sodium	$Na^{^{+}}$, $OH^{^{-}}$	Dégagement gazeux d'ammoniac : NH ₃ , qui colore en bleu un papier pH humidifié.
lon calcium : Ca ²⁺ (incolore)	ion oxalate	C ₂ O ₄ ²⁻	oxalate $C_2O_4^{2-}$, 2 d'ammonium	NH4	précipité BLANC d'oxalate de calcium : CaC₂O₄
ion cuivre II : Cu ²⁺	ion hydroxyde OH ⁻		Hydroxyde de sodium	Na ⁺ , OH¯	précipité BLEU d'hydroxyde de cuivre : Cu(HO)₂
(bleu)			hydroxyde d'ammonium (en excès)	νнϟ,он⁻	couleur bleu outremer : eau céleste
ion fer III : Fe ³⁺ (rouille)	ion thiocynanate	SCN ⁻	Thiocyanate de potassium	K ⁺ ,SCN ⁻	Complexe rouge sang de thiocyanofer(III): [Fe(SCN)] ²⁺
ion aluminium : Al ³⁺ (incolore)	ion hydroxyde	OH ⁻	Hydroxyde de sodium	Na ⁺ ,OH [−]	précipité BLANC d'hydroxyde d'aluminium : Al(HO) ₃ qui se dissout dans un excès de soude.
ion zinc : Zn ²⁺ (incolore)	ion hydroxyde	OH ⁻	Hydroxyde de sodium	Na ⁺ ,OH [−]	précipité BLANC d'hydroxyde de zinc Zn(HO)₂ qui se dissout dans un excès de soude
ion plomb : Pb ²⁺ (incolore)	ion sulfure	S ²⁻	sulfure de sodium	2Na ⁺ ,S ²⁻	Précipité NOIR de sulfure de plomb : PbS

Document 2 : Comment écrire l'équation de dissolution d'un solide ionique ?

Dans une solution obtenue par dissolution d'un solide ionique, les ions en solution garantissent l'électroneutralité de la solution.

Exemples:

✓ Une solution de chlorure de sodium obtenue par dissolution de NaCl (s) dans de l'eau distillée donne des ions Na⁺(aq) et Cl⁻(aq) et se note (Na⁺(aq) + Cl⁻(aq)).

$$NaCl_{(s)} \rightarrow Na^{+}_{(aq)} + Cl^{-}_{(aq)}$$

✓ Une solution de chlorure de baryum obtenue par dissolution de BaCl_{2 (s)} dans de l'eau distillée donne des ions Ba²⁺_(aq) et Cl⁻_(aq) et se note (Ba²⁺_(aq) + 2 Cl⁻_(aq)) afin de vérifier l'électroneutralité.

$$BaCl_{2 (s)} \rightarrow Ba^{2+}_{(aq)} + 2 Cl_{(aq)}^{-}$$

Les indices (s) et (aq) renseignent sur l'état physique des espèces :

- (s) pour solide,
- (aq) pour en solution aqueuse,
- (1) pour liquide : H₂O (I),
- **(g)** pour **gaz** : O_{2 (g)}.

Document 3 : Comment écrire l'équation de précipitation des ions ?

Lorsque des ions en solution précipitent, ils forment un solide ionique dont la formule fait intervenir la proportion des ions négatifs (anions) et positifs (cations) présents en solution.

Exemple:

Les ions Cu^{2+} précipitent avec les ions HO^- pour former un précipité d'hydroxyde de cuivre suivant l'équation : Cu^{2+} (aq) + 2 HO^- (aq) $\to Cu(OH)_2$ (s)